Answer : The value of [tex]\Delta G_{rxn}[/tex] is, [tex]-47.0kJ/mole[/tex]
Explanation :
The formula used for [tex]\Delta G_{rxn}[/tex] is:
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln K_p[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = 46.9 kJ
R = gas constant = 8.314 J/mole.K
T = temperature = [tex]25^oC=273+25=298K[/tex]
[tex]K_p[/tex] = equilibrium constant
First we have to calculate the value of [tex]K_p[/tex].
The given balanced chemical reaction is,
[tex]CO_2(g)+CCl_4(g)\rightarrow 2COCl_2(g)[/tex]
The expression for reaction quotient will be :
[tex]K_p=\frac{(p_{COCl_2})^2}{(p_{CO_2})\times (p_{CCl_4})}[/tex]
In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.
Now put all the given values in this expression, we get
[tex]K_p=\frac{(0.653)^2}{(0.459)\times (0.984)}[/tex]
[tex]K_p=0.944[/tex]
Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex] by using relation (1).
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln K_p[/tex]
Now put all the given values in this formula, we get:
[tex]\Delta G_{rxn}=-46.9kJ/mol+(8.314\times 10^{-3}kJ/mole.K)\times (298K)\ln (0.944)[/tex]
[tex]\Delta G_{rxn}=-47.0kJ/mol[/tex]
Therefore, the value of [tex]\Delta G_{rxn}[/tex] is, [tex]-47.0kJ/mole[/tex]