Consider the reaction: CO2(g) + CCl4(g) ⇌ 2 COCl2(g) ΔG° = 46.9 kJ Under the following conditions at 25 oC: LaTeX: P_{CO_2}P C O 2= 0.459 atm, LaTeX: P_{CCl_4}P C C l 4= 0.984 atm, and LaTeX: P_{COCl_2}P C O C l 2= 0.653 atm, ΔG for the reaction is , and the forward the reaction is

Respuesta :

Answer : The value of [tex]\Delta G_{rxn}[/tex] is, [tex]-47.0kJ/mole[/tex]

Explanation :

The formula used for [tex]\Delta G_{rxn}[/tex] is:

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln K_p[/tex]   ............(1)

where,

[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction

[tex]\Delta G_^o[/tex] =  standard Gibbs free energy  = 46.9 kJ

R = gas constant = 8.314 J/mole.K

T = temperature = [tex]25^oC=273+25=298K[/tex]

[tex]K_p[/tex] = equilibrium constant

First we have to calculate the value of [tex]K_p[/tex].

The given balanced chemical reaction is,

[tex]CO_2(g)+CCl_4(g)\rightarrow 2COCl_2(g)[/tex]

The expression for reaction quotient will be :

[tex]K_p=\frac{(p_{COCl_2})^2}{(p_{CO_2})\times (p_{CCl_4})}[/tex]

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Now put all the given values in this expression, we get

[tex]K_p=\frac{(0.653)^2}{(0.459)\times (0.984)}[/tex]

[tex]K_p=0.944[/tex]

Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex] by using relation (1).

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln K_p[/tex]

Now put all the given values in this formula, we get:

[tex]\Delta G_{rxn}=-46.9kJ/mol+(8.314\times 10^{-3}kJ/mole.K)\times (298K)\ln (0.944)[/tex]

[tex]\Delta G_{rxn}=-47.0kJ/mol[/tex]

Therefore, the value of [tex]\Delta G_{rxn}[/tex] is, [tex]-47.0kJ/mole[/tex]