The solution is x = 4 and y = 2
We have the following system of two linear equations in two variables:
[tex]\begin{array}{c}(1)\\(2)\end{array}\left\{ \begin{array}{c}y=2x-6\\y=-\frac{1}{2}x+4\end{array}\right.[/tex]
Subtract (2) from (1):
[tex]\begin{array}{c}(1)\\(2)\end{array}\left\{ \begin{array}{c}y=2x-6\\ -\left(y=-\frac{1}{2}x+4\right)\end{array}\right \\ \\ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ \\ y-y=2x-6-(-\frac{1}{2}x+4) \\ \\ 0=2x-6+\frac{1}{2}x-4 \\ \\ Combine \ like \ terms: \\ \\ 2x+\frac{1}{2}x-6-4=0 \\ \\ 2.5x-10=0 \\ \\ 2.5x=10 \\ \\ x=\frac{10}{2.5} \\ \\ x=4[/tex]
Substituting the x-value into (1):
[tex]y=2(4)-6 \\ \\ y=8-6 \\ \\ y=2[/tex]
So the solution to this system is:
[tex]\boxed{x=4 \ and \ y=2}[/tex]
Methods for solving systems of linear equations:
https://brainly.com/question/10185505
#LearnWithBrainly