To develop this problem it is necessary to apply the concepts related to the Dopler Effect.
The apparent frequency can be calculated through the expression
[tex]f' = \frac{v\pm v_0}{v}*f[/tex]
Where,
v = Velocity of the sound or light
[tex]v_0 =[/tex]Velocity of the observer
f=Real frequency
Our values are given as,
[tex]v = 343m/s[/tex]
[tex]v_0 = 30m/s[/tex]
[tex]f = 80Hz[/tex]
PART A ) Towards the factory we need to apply the plus sign
[tex]f' = \frac{v+v_0}{v}*f[/tex]
[tex]f' = \frac{343+30}{343}*80[/tex]
[tex]f' = 86.99Hz[/tex]
PART B ) Away from the factory we need to apply the minus sign
[tex]f' = \frac{v-v_0}{v}*f[/tex]
[tex]f' = \frac{343-30}{343}*80[/tex]
[tex]f' = 73 Hz[/tex]