Answer:
[tex]y=\frac{1}{2}x-3[/tex]
Step-by-step explanation:
we know that
The equation of the line in slope intercept form is
[tex]y=mx+b[/tex]
where
m is the slope or unit rate
b is the y-intercept or initial value
step 1
Find the slope
we have the points
(-22, -14) and (-18, -12)
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
substitute the values in the formula
[tex]m=\frac{-12+14}{-18+22}[/tex]
[tex]m=\frac{2}{4}[/tex]
simplify
[tex]m=\frac{1}{2}[/tex]
step 2
Find the y-intercept b
we have
[tex]m=\frac{1}{2}[/tex]
[tex]point\ (-22,-14)[/tex]
substitute
[tex]y=mx+b[/tex]
[tex]-14=\frac{1}{2}(-22)+b[/tex]
solve for b
[tex]-14=-11+b[/tex]
[tex]b=-14+11[/tex]
[tex]b=-3[/tex]
substitute
[tex]y=\frac{1}{2}x-3[/tex]