Respuesta :
Answer:
[tex]V_p = 267.258 m/s[/tex]
[tex]V_n = 38.375 m/s[/tex]
Explanation:
using the law of the conservation of the linear momentum:
[tex]P_i = P_f[/tex]
where [tex]P_i[/tex] is the inicial momemtum and [tex]P_f[/tex] is the final momentum
the linear momentum is calculated by the next equation
P = MV
where M is the mass and V is the velocity.
so:
[tex]P_i = m(270 m/s)[/tex]
[tex]P_f = mV_P + M_nV_n[/tex]
where m is the mass of the proton and [tex]V_p[/tex] is the velocity of the proton after the collision, [tex]M_n[/tex] is the mass of the nucleus and [tex]V_n[/tex] is the velocity of the nucleus after the collision.
therefore, we can formulate the following equation:
m(270 m/s) = m[tex]V_p[/tex] + 14m[tex]V_n[/tex]
then, m is cancelated and we have:
270 = [tex]V_p[/tex] + [tex]14V_n[/tex]
This is a elastic collision, so the kinetic energy K is conservated. Then:
[tex]K_i = \frac{1}{2}MV^2 = \frac{1}{2}m(270)^2[/tex]
and
Kf = [tex]\frac{1}{2}mV_p^2 +\frac{1}{2}(14m)V_n^2[/tex]
then,
[tex]\frac{1}{2}m(270)^2[/tex] = [tex]\frac{1}{2}mV_p^2 +\frac{1}{2}(14m)V_n^2[/tex]
here we can cancel the m and get:
[tex]\frac{1}{2}(270)^2[/tex] = [tex]\frac{1}{2}V_p^2 +\frac{1}{2}(14)V_n^2[/tex]
now, we have two equations and two incognites:
270 = [tex]V_p[/tex] + [tex]14V_n[/tex] (eq. 1)
[tex]\frac{1}{2}(270)^2[/tex] = [tex]\frac{1}{2}V_p^2 +\frac{1}{2}(14)V_n^2[/tex]
in the second equation, we have:
36450 = [tex]\frac{1}{2}V_p^2 +\frac{1}{2}(14)V_n^2[/tex] (eq. 2)
from this last equation we solve for [tex]V_n[/tex] as:
[tex]V_n = \sqrt{\frac{36450-\frac{1}{2}V_p^2 }{\frac{1}{2} } }[/tex]
and replace in the other equation as:
270 = [tex]V_p +[/tex] 14[tex]\sqrt{\frac{36450-\frac{1}{2}V_p^2 }{\frac{1}{2} } }[/tex]
so,
[tex]V_p = -267.258 m/s[/tex]
Vp is negative because the proton go in the -i hat direction.
Finally, replacing this value on eq. 1 we get:
[tex]V_n = \frac{270+267.258}{14}[/tex]
[tex]V_n = 38.375 m/s[/tex]