Answer:
The correct option is: (D) -2.4 kJ/mol
Explanation:
Chemical reaction involved: 2PG ↔ PEP
Given: The standard Gibb's free energy change: ΔG° = +1.7 kJ/mol
Temperature: T = 37° C = 37 + 273.15 = 310.15 K (∵ 0°C = 273.15K)
Gas constant: R = 8.314 J/(K·mol) = 8.314 × 10⁻³ kJ/(K·mol) (∵ 1 kJ = 1000 J)
Reactant concentration: 2PG = 0.5 mM
Product concentration: PEP = 0.1 mM
Reaction quotient: [tex]Q_{r} =\frac{\left [ PEP \right ]}{\left [ 2PG \right ]} = \frac{0.1 mM}{0.5 mM} = 0.2[/tex]
To find out the Gibb's free energy change at 37° C (310.15 K), we use the equation:
[tex]\Delta G = \Delta G^{\circ } + 2.303 R T log Q_{r}[/tex]
[tex]\Delta G = 1.7 kJ/mol + [2.303 \times (8.314 \times 10^{-3} kJ/(K.mol))\times (310.15 K)] log (0.2)[/tex]
[tex]\Delta G = 1.7 + [5.938] \times (-0.699) = 1.7 - 4.15 = (-2.45 kJ/mol)[/tex]
Therefore, the Gibb's free energy change at 37° C (310.15 K): ΔG = (-2.45 kJ/mol)