Respuesta :

[tex]x^2+y^2-4x=0[/tex]
[tex]r^2\cos^2\theta+r^2\sin^2\theta-4r\cos\theta=0[/tex]
[tex]r^2(\cos^2\theta+\sin^2\theta)-4r\cos\theta=0[/tex]
[tex]r^2=4r\cos\theta[/tex]
[tex]r=4\cos\theta[/tex]

Conversion of [tex]${{x}^{2}}+{{y}^{2}}-4x=0$[/tex] is circle with centre at [tex]$\left( 2,0 \right)$[/tex] and radius [tex]$r=2$[/tex].

What is circle equation?

A circle is a collection of all points in a plane that are evenly spaced. The fixed point is known as the circle's center.

So, the standard equation of a circle is given by:

[tex]${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$[/tex]

Where [tex](a,b)[/tex]  is the coordinates of center of the circle and [tex]r[/tex] is the radius.

Rewrite [tex]${{x}^{2}}+{{y}^{2}}-4x=0$[/tex] in the form of the standard circle equation.

So,

[tex]${{x}^{2}}-4x+{{y}^{2}}=0$[/tex]

Add [tex]$4$[/tex] both sides of the given equation.

[tex]${{x}^{2}}-4x+4+{{y}^{2}}=0+4$[/tex]

[tex]${{\left( x-2 \right)}^{2}}+{{y}^{2}}=4$[/tex]

[tex]${{\left( x-2 \right)}^{2}}+{{\left( y-0 \right)}^{2}}={{\left( 2 \right)}^{2}}$[/tex]

Therefore, the circle properties are,

[tex]$\left( a,b \right)=\left( 2,0 \right)$[/tex]

and [tex]r=2[/tex]

Learn more about circle of polar coordinates here

https://brainly.com/question/12809711

#SPJ2