A father racing his son has half the kinetic energy of the son, who has half the mass of the father.The father speeds up by 1.0 m/s and then has the same kinetic energy as the son.What are the original speeds of (a) the father and (b) the son?

Respuesta :

Answer:

(a) [tex]v_f=2.414\ m.s^{-1}[/tex]

(b) [tex]v_s=4.828\ m.s^{-1}[/tex]

Explanation:

Let:

mass of father be, [tex]m_f[/tex]

mass of son be, [tex]m_s=\frac{m_f}{2}[/tex]

speed of son be, [tex]v_s[/tex]

initial speed of father be, [tex]v_f[/tex]

After speeding up, speed of father is  [tex]v_f+1[/tex]

We know Kinetic Energy is given as

[tex]KE=\frac{1}{2} m.v^2[/tex] .....................................(1)

where:

m = mass

v = velocity

Hence, according to the initial condition the father is having kinetic energy half the kinetic energy of the son.

[tex]KE_s=2.KE_f[/tex]

[tex]\frac{1}{2} m_s.v_s^2=2\times \frac{1}{2} m_f.v_f^2[/tex]

[tex](\frac{m_f}{2})\times v_s^2=2\times m_f\times v_f^2[/tex]

[tex]v_s=2v_f[/tex] .................................................(2)

According to the final condition:

[tex]\frac{1}{2} m_s.v_s^2= \frac{1}{2} m_f.(v_f+1)^2[/tex]

[tex](\frac{m_f}{2})\times v_s^2=m_f.(v_f+1)^2[/tex]

[tex]v_s^2=2(v_f+1)^2[/tex]

[tex]v_s=\sqrt{2}(v_f+1)[/tex].....................................................(3)

(a)

From eq. 2 & 3

[tex]2v_f=\sqrt{2}(v_f+1)[/tex]

[tex]\sqrt{2}\ v_f=(v_f+1)[/tex]

[tex]v_f(\sqrt{2}-1)=1[/tex]

[tex]v_f=\frac{1}{(\sqrt{2}-1)}[/tex]

[tex]v_f=2.414\ m.s^{-1}[/tex]

(b)

putting the above value in eq. (2)

[tex]v_s=4.828\ m.s^{-1}[/tex]

ACCESS MORE