Answer:
(4,0)
Step-by-step explanation:
Line segment EG is partitioned by point F in the ratio 1:3.
This means that:
[tex]F - E = \frac{1}{4}(G - E)[/tex]
We use this equation to find both the x-coordinate and the y-coordinate of point G.
x-coordinate:
x-coordinate of E: 0
x-coordinate of F: 1
x-coordinate of G: x
Then
[tex]F - E = \frac{1}{4}(G - E)[/tex]
[tex]1 - 0 = \frac{1}{4}(x - 0)[/tex]
[tex]1 = \frac{x}{4}[/tex]
[tex]x = 4[/tex]
y-coordinate:
y-coordinate of E: 4
y-coordinate of F: 3
y-coordinate of G: y
Then
[tex]F - E = \frac{1}{4}(G - E)[/tex]
[tex]3 - 4 = \frac{1}{4}(y - 4)[/tex]
[tex]-1 = \frac{y-4}{4}[/tex]
[tex]y - 4 = -4[/tex]
[tex]y = 0[/tex]
What are the coordinates of point G?
x = 4, y = 0, so (4,0).