Answer:
For [tex]f(x+\frac{5}{4})[/tex], [tex]f(x)[/tex] is translated [tex]\frac{5}{4}[/tex] units left.
For [tex]f(x)-\frac{5}{4}[/tex], [tex]f(x)[/tex] is translated [tex]\frac{5}{4}[/tex] units down.
Step-by-step explanation:
The transformation of [tex]f(x)\rightarrow f(x+C)[/tex] means that the graph shift to left by C units if C is positive number and shifts to right by C units if C is a negative number.
The transformation of [tex]f(x)\rightarrow f(x)+C[/tex] means that the graph shifts up by C units if C is positive number and shifts down by C units if C is a negative number.
Here, in the transformation of [tex]f(x)\rightarrow f(x+\frac{5}{4}),C = \frac{5}{4}>0[/tex], so, the function translates left by [tex]\frac{5}{4}[/tex] units.
Similarly, in the transformation of [tex]f(x)\rightarrow f(x)-\frac{5}{4},C = -\frac{5}{4}<0[/tex], so, the function translates down by [tex]\frac{5}{4}[/tex] units.