Answer: 461
Step-by-step explanation:
Formula to find the sample size is given by :-
[tex]n=(\dfrac{z_{\alpha/2}\cdot \sigma}{E})^2[/tex] , where n is the sample size , [tex]\sigma[/tex] is the population standard deviation and [tex]z_{\alpha/2[/tex] is the two tailed test value of z for significance level ([tex]\alpha[/tex]).
Given : [tex]\sigma=25\text{ pounds}[/tex]
Margin of error : 3 pounds
Confidence level = 99%
Significance level : [tex]\alpha=1-0.99=0.01[/tex]
Critical value : [tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]
Then, the required minimum sample size would be :-
[tex]n=(\dfrac{(2.576)\cdot (25)}{3})^2\approx460.817777778\approx461[/tex]
Hence, the required minimum sample size = 461