Respuesta :
Answer:
Dimensions:
[tex]r = ~^3\sqrt{\frac{400}{\pi}}[/tex]
[tex]h = ~^3\sqrt{\frac{400}{\pi}}[/tex]
Step-by-step explanation:
Volume is given by
[tex]\text{Volume of cylinder} = \pi r^2h = 400~cm^3\\\\h = \displaystyle\frac{400}{\pi r^2}[/tex]
where r is the radius of can and h is the height of the can.
Area of lid and base = [tex]\pi r^2 + \pi r^2 = 2\pi r^2[/tex]
Area of curved surface = [tex]2\pi rh[/tex]
Cost function :
[tex]C(r) = \displaystyle\frac{0.01}{100}2\pi r^2 + \frac{0.02}{100}2\pi rh\\\\= \frac{0.02}{100}\pi r^2 + \frac{0.04}{100}\pi r \frac{400}{\pi r^2}\\\\= \frac{0.02}{100}\pi r^2 + \frac{0.16}{r}[/tex]
First, we differentiate C(r) with respect to r, to get,
[tex]\displaystyle\frac{d(C(r))}{dr} = \displaystyle\frac{0.04}{100}\pi r - \frac{0.16}{r^2}[/tex]
Equating the first derivative to zero, we get,
[tex]\displaystyle\frac{d(C(r))}{dr} = 0\\\\\frac{0.04}{100}\pi r - \frac{0.16}{r^2} = 0[/tex]
Solving, we get,
[tex]\displaystyle\frac{0.04}{100}\pi r - \frac{0.16}{r^2} = 0\\\\\frac{0.04}{100}\pi r = \frac{0.16}{r^2}\\\\r^3 = \frac{0.16\times 100}{0.04\pi}\\\\r =~^3\sqrt{\frac{400}{\pi}} = \bigg(\frac{400}{\pi}\bigg)^{\frac{1}{3}}[/tex]
Again differentiation C(r), with respect to r, we get,
[tex]\displaystyle\frac{d^2(C(r))}{dr^2} =\displaystyle\frac{0.04}{100}\pi+\frac{0.32}{r^3}[/tex]
At r = [tex]\bigg(\displaystyle\frac{400}{\pi}\bigg)^{\frac{1}{3}}[/tex],
[tex]\displaystyle\frac{d^2(C(r))}{dr^2} > 0[/tex]
Thus, by double derivative test, the minima occurs for C(r) at r = [tex]\bigg(\displaystyle\frac{400}{\pi}\bigg)^{\frac{1}{3}}[/tex].
Dimensions:
[tex]r = \bigg(\displaystyle\frac{400}{\pi}\bigg)^{\frac{1}{3}}[/tex]
[tex]h = \displaystyle\frac{400}{\pi r^2}\\\\h = \frac{400}{\pi (\frac{400}{\pi})^{\frac{2}{3}}} = ~^3\sqrt{\frac{400}{\pi}}[/tex]