Answer:4.04 m
Explanation:
mass of athlete [tex]m=57 kg[/tex]
initial speed [tex]u=8.9 m/s[/tex]
To get the maximum height h of Athlete we conserve energy i.e.
Kinetic Energy of Athlete=Potential energy gained by athlete
[tex]\frac{1}{2}\times mu^2=m\cdot g\cdot h[/tex]
[tex]h=\frac{v^2}{2g}[/tex]
[tex]h=\frac{8.9^2}{2\times 9.8}[/tex]
[tex]h=4.04 m[/tex]
(b)Speed at half of maximum height
Considering v be the velocity at half of maximum height
conserving Energy we can write
[tex]\frac{mu^2}{2}=\frac{mv^2}{2}+mg\frac{h}{2}[/tex]
[tex]\frac{mu^2}{4}=\frac{mv^2}{2}[/tex] (as [tex]\frac{1}{2}\times mu^2=m\cdot g\cdot h[/tex])
thus [tex]v^2=\frac{u^2}{2}[/tex]
[tex]v=\frac{u}{\sqrt{2}}[/tex]
[tex]v=\frac{8.9}{\sqrt{2}}[/tex]
[tex]v=6.29 m/s[/tex]
So Athlete interact with the gravitational Field of Earth