A projectile is launched from ground level at angle u and speed v0 into a headwind that causes a constant horizontal acceleration of magnitude a opposite the direction of motion. a. Find an expression in terms of a and g for the launch angle that gives maximum range. b. What is the angle for maximum range if a is 10% of g?

Respuesta :

Answer:

Explanation:

Given

Launch angle =u

Initial Speed is [tex]v_0[/tex]

Horizontal acceleration is [tex]a_x=a[/tex]

At maximum height velocity is zero therefore

[tex]v_f=v_i-gt[/tex]

[tex]0=v_0\sin u-gt[/tex]

[tex]t=\frac{v_0\sin u}{g}[/tex]

Total time of flight [tex]T=2t=\frac{2v_0\sin u}{g}[/tex]

During this time horizontal range is

[tex]R=v_o\cos u\cdot 2t-\frac{a(2t)^2}{2}[/tex]

[tex]R=\frac{2v_0^2\sin u\cos u}{g}-\frac{2av_0^2\sin ^u}{g^2}[/tex]

For maximum range [tex]\frac{\mathrm{d} R}{\mathrm{d} u}=0[/tex]

[tex]\frac{\mathrm{d} R}{\mathrm{d} u}=\frac{2v_0^2\cos 2u}{g}-\frac{4av_0^2\sin u\cos u}{g^2}[/tex]

[tex]\frac{\mathrm{d} R}{\mathrm{d} u}=\frac{2v_0^2}{g}\left [ \cos 2u-\frac{a}{g}\sin 2u\right ]=0[/tex]

[tex]\tan 2u=\frac{g}{a}[/tex]

[tex]u=\frac{1}{2}tan ^{-1}\frac{g}{a}[/tex]

(b)If a =10% g

[tex]a=0.1g[/tex]

thus [tex]u=\frac{1}{2}tan^{-1}\frac{g}{0.1g}[/tex]

[tex]u=42.14^{\circ}[/tex]

ACCESS MORE