Answer:
See explanation
Step-by-step explanation:
In equilateral ∆ABC,
[tex]AB = BC = AC=a[/tex]
[tex]m\angle A=m\angle B=m\angle C=60^{\circ}[/tex]
Points M, P, and K belong to AB , BC , and AC respectively and
AM:MB = BP:PC = CK:KA = 1:3.
So,
[tex]AM = BP = CK =\dfrac{1}{4}a[/tex]
[tex]MB = PC = KA =\dfrac{3}{4}a[/tex]
Triangles AMK, BPM and CKP are all congruent by SAS postulate, so
[tex]MK=MP=PK[/tex]
If [tex]MK=MP=PK,[/tex] triangle MPK is equilateral triangle