Answer:
[tex]\lim_{t \to \infty} v = \frac{mg}{k}[/tex]
Step-by-step explanation:
Firstly its necessary to put the autonomous DE in its normal form to get
[tex]\frac{dv}{dt} = g - \frac{kv}{m}[/tex]
To get the critical point we solve
g - [tex]\frac{kv}{m} = 0[/tex]
[tex]\frac{kv}{m} = g--> v = \frac{mg}{k}[/tex]
The critical point is [tex]v = \frac{mg}{k}[/tex]
[tex]\frac{dv}{dt} > 0 for v < \frac{mg}{k}[/tex]
and
[tex]\frac{dv}{dt} < 0 for v > \frac{mg}{k}[/tex]
from the phase portrait we observe that the critical point
v = [tex]\frac{mg}{k}[/tex] is stable
[tex]\lim_{t \to \infty} v = \frac{mg}{k}[/tex]