Answer:
Acceleration is [tex]148.33\ m/s^{2}[/tex]
Solution:
As per the question:
Radius of the circle, R = 1.8 m
Height above the ground, h = 1.8 m
Horizontal distance, x = 9.9 m
Now,
The magnitude of the centripetal acceleration can be calculated as:
[tex]a_{c} = \frac{v^{2}}{R}[/tex]
where
v = velocity
R = radius
[tex]a_{c}[/tex] = centripetal acceleration
Now, if we consider the vertical component of motion only, then considering the initial velocity, 'u' = 0, from kinematic eqn:
[tex]h = ut + \frac{1}{2}gt^{2}[/tex]
[tex]h = 0.t + \frac{1}{2}gt^{2}[/tex]
[tex]t = \sqrt{\frac{2h}{g}}[/tex]
[tex]t = \sqrt{\frac{2\times 1.8}{9.8}}[/tex]
t = 0.606 s
Now, for the horizontal component of velocity:
x = vt
[tex]v =\frac{x}{t}[/tex]
[tex]v =\frac{9.9}{0.606} = 16.34\ s[/tex]
Now, we know that the centripetal acceleration is given by:
[tex]a_{c} = \frac{16.34^{2}}{1.8} = 148.33\ m/s^{2}[/tex]