TIMED QUESTION Which are the roots of the quadratic function f(b) = b2 – 75? Select TWO options.


a b = 5 StartRoot 3 EndRoot
b b = Negative 5 StartRoot 5 Endroot
c b = 3 StartRoot 5 Endroot
d b = Negative 3 StartRoot 5 EndRoot
e b = 25 StartRoot 5 EndRoot

Respuesta :

Answer:

[tex]b=5\sqrt{3}[/tex] (b = 5 StartRoot 3 EndRoot)

and

[tex]b=-5\sqrt{3}[/tex] (b = Negative 5 StartRoot 3 EndRoot)

Step-by-step explanation:

we have

[tex]f(b)=b^{2}-75[/tex]

we know that

The roots of the quadratic function are the values of x when the value of the function is equal to zero

so

For f(b)=0

[tex]b^{2}-75=0[/tex]

Solve for b

Adds 75 both sides

[tex]b^{2}=75[/tex]

take square root both sides

[tex]b=(+/-)\sqrt{75}[/tex]

Simplify

[tex]b=(+/-)5\sqrt{3}[/tex]

therefore

[tex]b=5\sqrt{3}[/tex] (b = 5 StartRoot 3 EndRoot)

and

[tex]b=-5\sqrt{3}[/tex] (b = Negative 5 StartRoot 3 EndRoot)

The roots of the quadratic function are

a. b = 5√3

b. b = -5√3

Further explanation

Discriminant of quadratic equation ( ax² + bx + c = 0 ) could be calculated by using :

D = b² - 4 a c

From the value of Discriminant , we know how many solutions the equation has by condition :

D < 0 → No Real Roots

D = 0 → One Real Root

D > 0 → Two Real Roots

An axis of symmetry of quadratic equation y = ax² + bx + c is :

[tex]\large {\boxed {x = \frac{-b}{2a} } }[/tex]

Let us now tackle the problem!

Given:

[tex]f(b) = b^2 - 75[/tex]

The roots of the quadratic function could be calculated when f(b) = 0 :

[tex]0 = b^2 - 75[/tex]

[tex]b^2 = 75[/tex]

[tex]b = \pm \sqrt{75}[/tex]

[tex]b = \pm \sqrt{25 \times 3}[/tex]

[tex]b = \pm \sqrt{25} \times \sqrt{3}[/tex]

[tex]b = \pm 5 \times \sqrt{3}[/tex]

[tex]b = \pm 5\sqrt{3}[/tex]

[tex]b = 5\sqrt{3} \texttt{ or } b = -5\sqrt{3}[/tex]

[tex]\texttt{ }[/tex]

Learn more

  • Solving Quadratic Equations by Factoring : https://brainly.com/question/12182022
  • Determine the Discriminant : https://brainly.com/question/4600943
  • Formula of Quadratic Equations : https://brainly.com/question/3776858

Answer details

Grade: High School

Subject: Mathematics

Chapter: Quadratic Equations

Keywords: Quadratic , Equation , Discriminant , Real , Number

Ver imagen johanrusli
ACCESS MORE
EDU ACCESS
Universidad de Mexico