Answer:0.0153 W
Explanation:
Given
Magnetic Field B=0.3 T
N=5
radius R=0.18 m
[tex]N_0=2 rps[/tex]
[tex]\omega =2\pi N_0=12.56 rad/s[/tex]
flux associated with loop is
[tex]\phi _B=NBA\cos \theta [/tex]
[tex]\phi _B=NBA\cos \omega t[/tex]
and Induced emf is
[tex]e=\frac{\mathrm{d} \phi _B}{\mathrm{d} t}[/tex]
[tex]e=NBA\omega \sin \omega t[/tex]
and let Q be the energy dissipated then
[tex]Q=\int Pdt[/tex]
[tex]Q=\int_{0}^{T}\frac{E^2}{R}dt[/tex]
[tex]Q=\frac{(NBA\omega )^2}{R}\int_{0}^{T}\frac{1-\cos 2\omega t}{2}dt[/tex]
[tex]Q=\frac{(NBA\omega )^2}{R}\times \frac{T}{2}[/tex]
Thus [tex]\frac{Q}{T}=P_{avg}[/tex]
[tex]P_{avg}= \frac{(NBA\omega )^2}{2R}[/tex]
[tex]P_{avg}=\frac{(5\times 0.3\times 0.101/8\times 12.56)^2}{2\times 120}[/tex]
[tex]P_{avg}=0.0153 W[/tex]