Solve the quadratic equation by completing the square. What are the missing pieces to the steps?
-27 = 4x²- 24x
-27 = 4(x²- 6x + 9)
9 =4(x²- 6x + 9)
9/4 = (x -3)
+__= x - 3
__ = x​

Respuesta :

Answer:

The missing pieces should be after line 3.

9/4 = (x - 3)^2

<=> (3/2)^2 = (x - 3)^2

<=> x - 3 = 3/2 or x - 3 = -3/2

<=> x = 3 + 3/2 or x = 3 - 3/2

<=> x = 9/2 or x = 3/2

Hope this helps!

:)

Answer:

I think the missing steps are:

[tex]\frac{3}{2}=x-3[/tex]

and

[tex]\frac{9}{2}=x[/tex]

Step-by-step explanation:

[tex]-27=4x^2-24x[/tex]

First, factor 4 to make isolate [tex]x^2[/tex]

[tex]-27=4(x^2-6x)[/tex]

Now, divide by 4.

[tex]-\frac{27}{4}=x^2-6x[/tex]

Complete the square by adding [tex](\frac{b}{2})^2[/tex]

[tex](\frac{b}{2})^2-\frac{27}{4}=x^2-6x+ (\frac{b}{2})^2[/tex]

[tex](\frac{6}{2})^2-\frac{27}{4}=x^2-6x+ (\frac{6}{2})^2[/tex]

[tex](3)^2-\frac{27}{4}=x^2-6x+ (3)^2[/tex]

[tex]9-\frac{27}{4}=x^2-6x+9[/tex]

Solve the difference.

[tex]\frac{9*4-27}{4}=x^2-6x+9[/tex]

[tex]\frac{36-27}{4}=x^2-6x+9 \\\frac{9}{4}=x^2-6x+9[/tex]

Factor the equation.

[tex]\frac{9}{4}=(x-3)(x-3)[/tex]

Rewrite it;

[tex]\frac{9}{4}=(x-3)^2[/tex]

Extract the square root.

[tex]\sqrt{\frac{9}{4} }=x-3[/tex]

Take the square root of 9 and 4.

[tex]\frac{3}{2}=x-3[/tex]

Add 3.

[tex]\frac{3}{2}+3=x[/tex]

Do the sum

[tex]\frac{3+2*3}{2}=x\\\frac{3+6}{2}=x\\\frac{9}{2}=x[/tex]

ACCESS MORE