A rectangular current loop (a = 16.0 cm, b = 30.0 cm) is located a distance d = 14.0 cm near a long, straight wire that carries a current ( I W ) (IW) of 10.0 A (see the drawing). The current in the loop is I L IL = 20.0 A. Determine the magnitude of the net magnetic force that acts on the loop.

Respuesta :

Answer:

The magnitude of the net magnetic force is [tex]3.12\times10^{-5}\ N[/tex]

Explanation:

Given that,

Distance = 14.0 cm

Side a = 16.0 cm

Side b = 30.0 cm

Current [tex]I_{w}=10.0\ A[/tex]

Current [tex]I_{L}=20.0\ A[/tex]

According to figure,

Force F₂ and F₄  balance by each other

So, We need to calculate the magnetic force

Using formula of magnetic force

[tex]F_{1}=\dfrac{\mu_{0}}{4\pi}\times\dfrac{2I_{L}I_{\omega}}{d}\times a[/tex]

Put the value into the formula

[tex]F_{1}=\dfrac{10^{-7}\times2\times20\times10}{14.0\times10^{-2}}\times16.0\times10^{-2}[/tex]

[tex]F_{1}=4.57\times10^{-5}\ N[/tex]

The direction of force is downward.

For F₃,

[tex]F_{3}=\dfrac{10^{-7}\times2\times20\times10}{44\times10^{-2}}\times16.0\times10^{-2}[/tex]

[tex]F_{3}=1.45\times10^{-5}\ N[/tex]

We need to calculate the magnitude of the net magnetic force that acts on the loop

Using formula of net magnetic force

[tex]F=F_{1}-F_{3}[/tex]

Put the value into the formula

[tex]F=4.57\times10^{-5}-1.45\times10^{-5}[/tex]

[tex]F=3.12\times10^{-5}\ N[/tex]

The direction of net force towards the wire.

Hence, The magnitude of the net magnetic force is [tex]3.12\times10^{-5}\ N[/tex]

Ver imagen CarliReifsteck
ACCESS MORE