A proton with mass 1.67×10⁻²⁷kg is propelled at an initial speed of 3.00×10⁵m/s directly toward a uranium nucleus 5.00 m away. The proton is repelled by the uranium nucleus with a force of magnitude F=α/x², where is the separation between the two objects and α= 2.12×10⁻²⁶ N•m². Assume that the uranium nucleus remains at rest. What is the speed of the proton when it is 8.00×10⁻¹⁰m from the the uranium nucleus?

Respuesta :

Answer:

[tex]2.4\times 10^5 m/s[/tex]

Explanation:

We are given that

Mass of proton=[tex]m_p=1.67\times 10^{-27}kg[/tex]

Initial speed of proton=[tex]v_i=3.00\times 10^5 m/s[/tex]

[tex]x_i=-5m[/tex]

[tex]\alpha=2.12\times 10^{-26}Nm^2[/tex]

[tex]F=-\frac{\alpha}{x^2}[/tex]

Where x is the separation between the two objects.

We have to find the speed of the proton when it is [tex]8.00\times 10^{-10} m[/tex] from the uranium nucleus.

It means we have to find [tex]v_f \;if x_f=-8.00\times 10^{-10} m[/tex]

By work energy theorem

W=[tex]\Delta K.E=\int_{x_i}^{x_f} Fdx[/tex]

Substitute the values

[tex]W=\Delta K.E=\int_{x_i}^{x_f} -\frac{\alpha}{x^2}dx[/tex]

[tex]W=-\int_{-5}^{-8\times 10^{-10}} \alpha x^{-2}dx[/tex]

[tex]W=\alpha[x^{-1}]^{-8\times 10^{-10}}_{-5}[/tex]

[tex]W=2.12\times 10^{-26}\times(-\frac{1}{8\times 10^{-10}}+\frac{1}{5})[/tex]

[tex]W=-2.65\times 10^{-17}J[/tex]

[tex]\frac{1}{2}m(v^2_f-v^2_i)=-2.65\times 10^{-17}[/tex]

[tex]\frac{1}{2}\cdot 1.67\times 10^{-27}}(v^2_f-(3\times 10^5)^2)=-2.65\times 10^{-17}[/tex]

[tex]v^2_f-9\times 10^{10}=\frac{2\cdot (-2.65)\times 10^{-17}}{1.67\times 10^{-27}}[/tex]

[tex]V^2_f-9\times 10^{10}=-3.17\times 10^{10}[/tex]

[tex]v^2_f=-3.17\times 10^{10}+9\times 10^{10}[/tex]

[tex]v^2_f=5.83\times 10^{10}[/tex]

[tex]v_f=\sqrt{5.83\times 10^{10}}=2.4\times 10^5 m/s[/tex]

Hence, the speed of proton when it is [tex]8\times 10^{-10} m[/tex] from the uranium nucleus=[tex]v_f=2.4\times 10^5 m/s[/tex]

Ver imagen lublana
ACCESS MORE
EDU ACCESS