If OB= 17 and AB = 30, then OR =

Answer:
Option A.
Step-by-step explanation:
Given information: OB= 17 and AB = 30
If a line is perpendicular to a chord of a circle and passes through the centre of the circle, then it bisects that chord.
Using this definition we can say that point R is the midpoint of AB.
[tex]RB=\dfrac{AB}{2}[/tex]
[tex]RB=\dfrac{30}{2}[/tex]
[tex]RB=15[/tex]
According to the Pythagoras theorem, in a right angle triangle
[tex]hypotenuse^2=base^2+perpendicular^2[/tex]
Using Pythagoras theorem in triangle ORB,
[tex]OB^2=RB^2+OR^2[/tex]
[tex](17)^2=(15)^2+OR^2[/tex]
[tex]289=225+OR^2[/tex]
[tex]289-225=OR^2[/tex]
[tex]64=OR^2[/tex]
Taking square root on both sides.
[tex]\sqrt{64}=OR[/tex]
[tex]8=OR[/tex]
The val;ue of OR is 8 units.
Therefore, the correct option is A.