contestada

A 0.5-cm diameter air bubble at 5°C and 3 atm pressure rises to the surface. Determine its final diame- ter when T 25°C and P 1 atm. (Ignore any water vapor in the bubble.)

Respuesta :

AMB000

Answer:

d=0.738cm

Explanation:

We divide this problem in two parts, below the surface is part 1 (where we have [tex]P_1V_1=n_1RT_1[/tex]), and on the surface part 2 (where we have [tex]P_2V_2=n_2RT_2[/tex]).  In this case, pressure, volume and temperature will vary, and n will remain constant because the amount of air is always the same (and R is always a constant), so we have [tex]n_1=n_2[/tex].

We can then do:

[tex]nR=\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]

The volume of a sphere is [tex]V=\frac{4\pi r^3}{3}[/tex], so we can write

[tex]\frac{P_1}{T_1}\frac{4\pi r_1^3}{3}=\frac{P_2}{T_2}\frac{4\pi r_2^3}{3}[/tex]

Which is

[tex]\frac{P_1r_1^3}{T_1}=\frac{P_2r_2^3}{T_2}[/tex]

And obtain our radius for the bubble on the surface:

[tex]r_2=\sqrt[3]{\frac{P_1T_2r_1^3}{P_2T_1}}=\sqrt[3]{\frac{P_1T_2}{P_2T_1}}r_1[/tex]

Since the diameter is 2 times the radius this can be written as (the factor 2 cancels out):

[tex]d_2=\sqrt[3]{\frac{P_1T_2}{P_2T_1}}d_1[/tex]

And we put our values in S.I.:

[tex]d_2=\sqrt[3]{\frac{(3atm)(298K)}{(1atm)(278K)}}(0.005m)=0.00738m=0.738cm[/tex]