Answer : The length of a one-dimensional box for an electron is [tex]2.819\times 10^{31}\AA[/tex]
Explanation :
The energy level of quantum particle in a one-dimensional box is given as:
[tex]E_n=\frac{n^2h^2}{8mL^2}[/tex]
where,
[tex]E_n[/tex] = 479 kJ/mol = 479000 J/mol
n = energy level = 1
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
m = mass of electron = [tex]9.109\times 10^{-31}kg[/tex]
L = length of a one-dimensional box = ?
Now put all the given values in the above formula, we get:
[tex]479000J/mol=\frac{(1)^2\times (6.626\times 10^{-34}Js)^2}{8\times (9.109\times 10^{-31}kg)\times L^2}[/tex]
[tex]L=2.819\times 10^{21}m[/tex]
conversion used : [tex]1m=10^{10}\AA[/tex]
[tex]L=2.819\times 10^{31}\AA[/tex]
Therefore, the length of a one-dimensional box for an electron is [tex]2.819\times 10^{31}\AA[/tex]