What is the length of a one-dimensional box for an electron (9.109 x 10-31 kg) with an n=1 energy of 479 kJ/mol? Give the answer in angstroms (A).

Respuesta :

Answer : The length of a one-dimensional box for an electron is [tex]2.819\times 10^{31}\AA[/tex]

Explanation :

The energy level of quantum particle in a one-dimensional box is given as:

[tex]E_n=\frac{n^2h^2}{8mL^2}[/tex]

where,

[tex]E_n[/tex] = 479 kJ/mol = 479000 J/mol

n = energy level = 1

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

m = mass of electron = [tex]9.109\times 10^{-31}kg[/tex]

L = length of a one-dimensional box = ?

Now put all the given values in the above formula, we get:

[tex]479000J/mol=\frac{(1)^2\times (6.626\times 10^{-34}Js)^2}{8\times (9.109\times 10^{-31}kg)\times L^2}[/tex]

[tex]L=2.819\times 10^{21}m[/tex]

conversion used : [tex]1m=10^{10}\AA[/tex]

[tex]L=2.819\times 10^{31}\AA[/tex]

Therefore, the length of a one-dimensional box for an electron is [tex]2.819\times 10^{31}\AA[/tex]