Respuesta :
[tex][tex]x-length\\ y-width\\ x=2y+3\\ Perimeter: 2x+2y=72\\\\ System\ of\ equations:\\ \left \{ {{x=2y+3} \atop {2x+2y}} \right. \\ Substituting\ x=2y+3\\ 2(2y+3)+2y=72\\ 4y+6+2y=72\\ 66y=60|:6\\ y=11\\x=2y+3=2*11+3=25[/tex][/tex]
a --> length
b --> width
[tex]\begin{cases}a=2b+3\\2a+2b=72\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\2(2b+3)+2b=72\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\4b+6+2b=72\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\6b=66|:6\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\b=11\end{cases}[/tex]
[tex]\begin{cases}a=2*11+3\\b=11\end{cases}[/tex]
[tex]\begin{cases}a=25\\b=11\end{cases}[/tex]
b --> width
[tex]\begin{cases}a=2b+3\\2a+2b=72\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\2(2b+3)+2b=72\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\4b+6+2b=72\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\6b=66|:6\end{cases}[/tex]
[tex]\begin{cases}a=2b+3\\b=11\end{cases}[/tex]
[tex]\begin{cases}a=2*11+3\\b=11\end{cases}[/tex]
[tex]\begin{cases}a=25\\b=11\end{cases}[/tex]