Answer:
The cost of one hot dog is $1.5 and the cost of one drink is $2.
Step-by-step explanation:
Let
h = the cost of a hog dog and d = the cost of a drink
We know from the information given that:
So we have a system of equations
[tex]5\cdot h +3\cdot d=13.50\\2\cdot h +3\cdot d=9.00[/tex]
We can solve by elimination as follows:
[tex]\mathrm{Multiply\:}5h+3d=13.5\mathrm{\:by\:}2:\\10h+6d=27\\[/tex]
[tex]\mathrm{Multiply\:}2h+3d=9\mathrm{\:by\:}5:\\10h+15d=45[/tex]
Subtract [tex]10h+6d=27[/tex] from [tex]10h+15d=45[/tex]
[tex](10h+15d=45) -(10h+6d=27)=\\9d=18[/tex]
[tex]\mathrm{Solve}\:9d=18\:\mathrm{for}\:d:\\d=2[/tex]
[tex]\mathrm{For\:}10h+6d=27\mathrm{\:plug\:in\:}\quad \:d=2[/tex]
[tex]\mathrm{Solve}\:10h+6\cdot \:2=27\:\mathrm{for}\:h:\\h=\frac{3}{2} = 1.5[/tex]
Therefore
h = $1.5 and d = $2