Respuesta :
Answer:
61.4 s
Explanation:
The distance d₁ traveled by the asteroid:
[tex]d_1=\frac{1}{2}a_1t^2[/tex]
The distance d₂ traveled by the space ship:
[tex]d_2=\frac{1}{2}a_2t^2[/tex]
The total distance d:
[tex]d=d_1+d_2=\frac{1}{2}(a_1+a_2)t^2[/tex]
Solving for time t:
[tex]t=\sqrt{\frac{2d}{a_1+a_2}}=\sqrt{\frac{2d}{F(\frac{1}{m_1}+\frac{1}{m_2})}}=\sqrt{\frac{2dm_1m_2}{F(m_1+m_2)}}[/tex]
Answer:
The answer is 61.35 s
Explanation:
We start by writing the distance equations:
d = xtug + xasteroid (eq. 1)
xtug = votug*t + (atug*t^2)/2; if votug = 0, we have:
xtug = (atug*t^2)/2
xasteroid = voasteroid*t +(aasteroid*t^2)/2; if voasteroid = 0, we have:
xasteroid = (aasteroid*t^2)/2
replacing in equation 1:
d = (atug*t^2)/2 + (aasteroid*t^2)/2 = (atug + aasteroid)*t^2/2
Clearing t:
t = ((2*d)/(atug + aasteroid))^1/2
applying Newton's second law we have:
F = m*a; F = force, m = mass, a=acceleration
a= F/m
t = ((2*d)/(F*((1/mtug) +(1/masteroid))))^1/2 = ((2*432)/(518*((1/3740) + (1/5690))))^1/2 = 61.35 s