Answer:
The most general anti-derivative of the function is [tex]\frac{3^x}{\ln \left(3\right)}+7\cosh \left(x\right)+C[/tex]
Step-by-step explanation:
Definition. An anti-derivative of a function f(x) is a function whose derivative is equal to f(x). That is, if F′(x) = f(x), then F(x) is an anti-derivative of f(x).
We can use this theorem
If F is an anti-derivative of f on an interval I, then the most general anti-derivative of f on I is
F(x) + C,
where C is an arbitrary constant.
and [tex]\int\limits {f(x)} \, dx=F(x)[/tex] means [tex]F'(x) = f(x)[/tex]
To find the anti-derivative of a function you need to follow these steps:
[tex]\int \:3^x+7\sinh \left(x\right)dx = \int \:3^xdx+\int \:7\sinh \left(x\right)dx[/tex]
[tex]\int \:3^xdx = \frac{3^x}{\ln \left(3\right)}[/tex]
Because [tex]\int a^xdx=\frac{a^x}{\ln a}[/tex]
[tex]\int \:7\sinh \left(x\right)dx=7\cosh \left(x\right)[/tex]
Because [tex]\int \sinh \left(x\right)dx=\cosh \left(x\right)[/tex]
So the most general anti-derivative of the function is [tex]\frac{3^x}{\ln \left(3\right)}+7\cosh \left(x\right)+C[/tex]