Answer:
[tex]3.7\times 10^{51})[/tex] kg
Explanation:
[tex]R[/tex] = radius of the sphere modeled as universe = [tex]13\times 10^{25}[/tex] m
Volume of sphere is given as
[tex]V = \frac{4\pi R^{3}}{3}[/tex]
[tex]V = \frac{4(3.14) (13\times 10^{25})^{3}}{3}[/tex]
[tex]V = 9.2\times 10^{78}[/tex] m³
[tex]\rho [/tex] = average total mass density of universe = [tex]1\times 10^{-26}[/tex] kg/m³
[tex]m[/tex] = Total mass of the universe = ?
We know that mass is the product of volume and density, hence
[tex]m = \rho V[/tex]
[tex]m = (1\times 10^{-26}) (9.2\times 10^{78})[/tex]
[tex]m = 9.2\times 10^{52}[/tex] kg
[tex]M[/tex] = mass of "ordinary" matter = ?
mass of "ordinary" matter is only about 4% of total mass, hence
[tex]M = (0.04) m[/tex]
[tex]M = (0.04)(9.2\times 10^{52})[/tex]
[tex]M = 3.7\times 10^{51}[/tex] kg