I suppose
[tex]\vec F(x,y,z)=\langle x^3,y^3,-3z^2\rangle[/tex]
whose divergence is
[tex]\mathrm{div}\vec F=3x^2+3y^2-6z[/tex]
By the divergence theorem, the flux of [tex]\vec F[/tex] across the boundary of [tex]T[/tex] is equal to the integral of [tex]\mathrm{div}\vec F[/tex] over [tex]T[/tex]:
[tex]\displaystyle\iint_{\partial T}\vec F\cdot\mathrm d\vec S=\iiint_T\mathrm{div}\vec F\,\mathrm dV[/tex]
The volume integral is easily computed in cylindrical coordinates; take
[tex]\begin{cases}x=r\cos\theta\\y=r\sin\theta\\z=\zeta\end{cases}\implies\mathrm dV=r\,\mathrm dr\,\mathrm d\theta\,\mathrm d\zeta[/tex]
[tex]\displaystyle\iiint_T\mathrm{div}\vec F\,\mathrm dV=\int_0^{2\pi}\int_0^2\int_0^2(3r^2-6\zeta)r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle6\pi\int_0^2\int_0^2(r^3-2r\zeta)\,\mathrm d\zeta\,\mathrm dr[/tex]
[tex]=\displaystyle12\pi\int_0^2(r^3-2r)\,\mathrm dr=\boxed0[/tex]