An RLC circuit is composed of a 3.5 kΩ resistor, 1.1 nF capacitor and 7.6 mH inductor. If an AC 6.8 V rms is applied, what frequency (in Hz) is necessary for the maximum power to be supplied to the circuit?

Respuesta :

Answer:

[tex]5.5\times 10^{4}[/tex] Hz

Explanation:

we know that the power is maximum in RLC circuit when inductive reactance and capacitive reactance are equal.

[tex]C[/tex] = Capacitance of the capacitor = 1.1 x 10⁻⁹ F

[tex]L[/tex] = Inductance of the inductor = 7.6 x 10⁻³ H

[tex]f[/tex] = frequency necessary for maximum power

[tex]X_{C}[/tex] =  capacitive reactance = [tex]\frac{1}{2\pi fC}[/tex]

[tex]X_{L}[/tex] =  inductive reactance = [tex]2\pi fL[/tex]

For maximum power :

[tex]X_{L}[/tex] = [tex]X_{C}[/tex]

[tex]2\pi fL[/tex] = [tex]\frac{1}{2\pi fC}[/tex]

[tex]f = \frac{1}{2\pi \sqrt{LC}}[/tex]

[tex]f = \frac{1}{2(3.14) \sqrt{(7.6\times 10^{-3})(1.1\times 10^{-9})}}[/tex]

[tex]f =5.5\times 10^{4}[/tex] Hz