Answer:
[tex]5.5\times 10^{4}[/tex] Hz
Explanation:
we know that the power is maximum in RLC circuit when inductive reactance and capacitive reactance are equal.
[tex]C[/tex] = Capacitance of the capacitor = 1.1 x 10⁻⁹ F
[tex]L[/tex] = Inductance of the inductor = 7.6 x 10⁻³ H
[tex]f[/tex] = frequency necessary for maximum power
[tex]X_{C}[/tex] = capacitive reactance = [tex]\frac{1}{2\pi fC}[/tex]
[tex]X_{L}[/tex] = inductive reactance = [tex]2\pi fL[/tex]
For maximum power :
[tex]X_{L}[/tex] = [tex]X_{C}[/tex]
[tex]2\pi fL[/tex] = [tex]\frac{1}{2\pi fC}[/tex]
[tex]f = \frac{1}{2\pi \sqrt{LC}}[/tex]
[tex]f = \frac{1}{2(3.14) \sqrt{(7.6\times 10^{-3})(1.1\times 10^{-9})}}[/tex]
[tex]f =5.5\times 10^{4}[/tex] Hz