Answer:
Resulting heat generation, Q = 77.638 kcal/h
Given:
Initial heat generation of the sphere, [tex]Q_{Gi} = 46480 W/m^{3}[/tex]
Maximum temperature, [tex]T_{m} = 360 K[/tex]
Radius of the sphere, r = 0.1 m
Ambient air temperature, [tex]T = 25^{\circ}C[/tex] = 298 K
Solution:
Now, maximum heat generation, [tex]Q_{m}[/tex] is given by:
[tex]T_{m} = \frac{Q_{m}r^{2}}{6K} + T [/tex] (1)
where
K = Thermal conductivity of water at [tex]T_{m} = 360 K = 0.67 W/m^{\circ}C[/tex]
Now, using eqn (1):
[tex]360 = \frac{Q_{m}\times 0.1^{2}}{6\times 0.67} + 298[/tex]
[tex]Q_{m} = 24924 W/m^{3}[/tex]
max. heat generation at maintained max. temperature of 360 K is 24924[tex]W/m^{3}[/tex]
For excess heat generation, Q:
[tex]Q = (Q_{Gi} - Q_{m})\times volume of sphere, V[/tex]
where
[tex]V = \frac{4}{3}\pi r^{3}[/tex]
[tex]Q = (46480 - 24924)\times \frac{4}{3}\pi\0.1^{3} = 21556\times \frac{4}{3}\pi\0.1^{3} W/m^{3}[/tex]
[tex]Q = 90.294 W[/tex]
Now, 1 kcal/h = 1.163 W
Therefore,
[tex]Q = \frac{90.294}{1.163} = 77.638 kcal/h[/tex]