Respuesta :
[tex]\vec F(x,y,z)=x^2\sin y\,\vec\imath+x\cos y\,\vec\jmath-xz\sin y\,\vec k[/tex]
has divergence
[tex]\mathrm{div}\vec F(x,y,z)=2x\sin y-x\sin y-x\sin y=0[/tex]
so that the flux of [tex]\vec F[/tex] across [tex]S[/tex] is 0 by the divergence theorem.
Answer:
0
Step-by-step explanation:
According to the Divergence Theorem,
[tex]\int \int F\,dS=\int \int \int divF\,\,dV[/tex]
Here, for [tex]F=\left ( F_1,F_2,F_3 \right )[/tex],
[tex]divF=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}[/tex]
Take [tex]F_1=x^2\sin y\,,\,F_2=x\cos y\,\,,F_3=-xz\sin y[/tex]
Differentiate [tex]F_1,F_2,F_3[/tex] with respect to [tex]x,y,z[/tex] respectively,
[tex]\frac{\partial F_1}{\partial x}=\frac{\partial }{\partial x}x^2\sin y=2x\sin y\\\frac{\partial F_2}{\partial y}=\frac{\partial }{\partial y}x\cos y=-x\sin y\\\frac{\partial F_3}{\partial z}=\frac{\partial }{\partial z}-xz\sin y=-x\sin y[/tex]
Therefore,
[tex]divF=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\\=2x\sin y-x\sin y-x\sin y\\=0[/tex]
So,
[tex]\int \int F\,dS=\int \int \int divF\,\,dV=0[/tex]