[tex]\vec F(x,y,z)=e^y\tan z\,\vec\imath+(y^6-x^2)\,\vec\jmath+x\sin y\,\vec k[/tex]
has divergence
[tex]\nabla\cdot\vec F(x,y,z)=6y^5[/tex]
Then by the divergence theorem, the flux of [tex]\vec F[/tex] across [tex]S[/tex] is
[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\int_{-1}^1\int_{-1}^1\int_0^{2-x^4-y^4}6y^5\,\mathrm dz\,\mathrm dy\,\mathrm dx[/tex]
[tex]=\displaystyle6\int_{-1}^1\int_{-1}^1y^5(2-x^4-y^4)\,\mathrm dy\,\mathrm dx[/tex]
The integrand wrt [tex]y[/tex] is odd and symmetric about [tex]y=0[/tex], so the remaining integrals vanish and the flux is 0.