Answer:
[tex]x_{1} =4+2\sqrt{2}\\x_{2}=4-2\sqrt{2}[/tex]
Step-by-step explanation:
[tex]x^{2}[/tex] - 8x+ 8 = 0
we divide the coefficient of the X by half :
in this case: 8x/2 = 4 , then we do the following
to the result obtained (4) squared: 4^2=16
we sum and subtract by 16 to maintain the balance of equation:
[tex]x^{2}[/tex] - 8x+ 16-16+8 = 0
we have:
[tex](x-4)^{2}[/tex] -16 +8=0
[tex](x-4)^{2}[/tex] =16-8
[tex](x-4)^{2}[/tex] = 8
we write the square root on both sides of the equation:
[tex]\sqrt{(x-4)^{2}} = \sqrt{8}[/tex]
we know:
[tex]\sqrt{a^{2}} = abs(a)[/tex]
so we have:
abs(x-4)=[tex]\sqrt{2^{2}2 }[/tex]
abs(x-4)=2[tex]\sqrt{2}[/tex]
we have:
[tex]x_{1} -4 = 2\sqrt{2} \\\\x_{2} -4 =- 2\sqrt{2}[/tex]
finally we have:
[tex]x_{1} = 4+2\sqrt{2} \\\\x_{2} =4 - 2\sqrt{2}[/tex]