Answer: 2.5
Step-by-step explanation:
Let [tex]\mu[/tex] be the population mean .
Then, Null hypothesis : [tex]H_0:\mu\leq46[/tex]
Alternative hypothesis : [tex]H_1:\mu>46[/tex]
We assume that this is a normal distribution.
Given : Sample size : n=25 , since the sample is small (n<30) so we cannot apply z-test . Thus the test is t-test.
Sample mean : [tex]\overline{x}=50[/tex]
Population standard deviation : [tex]\sigma= 8[/tex]
The test statistic for population mean is given by :-
[tex]t=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
i.e. [tex]t=\dfrac{50-46}{\dfrac{8}{\sqrt{25}}}=2.5[/tex]
Hence, the observed critical value = 2.5