An electronics company produces​ transistors, resistors, and computer chips. Each transistor requires 3 units of​ copper, 1 unit of​ zinc, and 2 units of glass. Each resistor requires 3​, 2​, and 1 units of the three​ materials, and each computer chip requires 2​, 1​, and 2 units of these​ materials, respectively. How many of each product can be made with 1730 units of​ copper, 690 units of​ zinc, and 1380 units of​ glass? Solve this exercise by using the inverse of the coefficient matrix to solve a system of equations.

Respuesta :

Answer:

An electronics company can be produce 350 transistors and 340 computer chips, they can´t produce resistors.

Step-by-step explanation:

1. We will name the variables for transistors, resistors and the computer chips.

a = Transistors

b= Resistors

c = Computer chips

2. We propose three linear equations, one for the copper, one for the zinc and one for the glass.

[tex]\left \{ {{3a+3b+2c=1730} \atop {a+2b+c=690}}\atop {2a+b+2c=1380}} \right.[/tex]

3. We write the matrix form as Ax=d

[tex]A=\left(\begin{array}{ccc}3&3&2\\1&2&1\\2&1&2\end{array}\right)[/tex]

[tex]x=\left(\begin{array}{ccc}a\\b\\c\end{array}\right)[/tex]

[tex]A=\left(\begin{array}{ccc}1730\\690\\1380\end{array}\right)[/tex]

With this formula the solution of x is [tex]x=\frac{d}{A}[/tex] or [tex]x=A^{-1}d[/tex]

4. We will find the inverse matrix [tex]A^{-1}[/tex] using the formula:

[tex]A^{-1} = \frac{1}{detA} (C_{A})^{T}[/tex]

a. det A

[tex]det A=\left[\begin{array}{ccc}3&3&2\\1&2&1\\2&1&2\end{array}\right] =3*(4-1)-3*(2-2)+2*(1-4)=9-0-6=3[/tex]

b. [tex](C_{A})^{T}[/tex]

[tex]C_{A}=\left(\begin{array}{ccc}4-1&.(2-2)&1-4\\-(6-2)&6-4&-(3-6)\\3-4&-(3-2)&6-3\end{array}\right)[/tex]

[tex]C_{A}=\left(\begin{array}{ccc}3&.0&-3\\-4&2&3\\-1&-1&3\end{array}\right)[/tex]

[tex](C_{A}) ^T=\left(\begin{array}{ccc}3&0&-3\\-4&2&3\\-1&-1&3\end{array}\right)^T[/tex]

[tex](C_{A}) ^T=\left(\begin{array}{ccc}3&-4&-1\\0&2&-1\\-3&3&3\end{array}\right)[/tex]

c.[tex]A^{-1} [/tex]

[tex]A^{-1}=\frac{1}{3} \left(\begin{array}{ccc}3&-4&-1\\0&2&-1\\-3&3&3\end{array}\right)[/tex]

5. As [tex]x=\frac{d}{A}[/tex] or [tex]x=A^{-1}d[/tex], the solution of x is:

[tex]x=\frac{1}{3}\left(\begin{array}{ccc}3&-4&-1\\0&2&-1\\-3&3&3\end{array}\right)\left(\begin{array}{ccc}1730\\690\\1380\end{array}\right)[/tex]

[tex]x=\frac{1}{3}\left(\begin{array}{ccc}(3*1730)+(-4*690)+(-1*1380)\\(0*1730)+(2*690)+(-1*1380)\\(-3*1730)+(3*690)+(3*1380)\end{array}\right)[/tex]

[tex]x=\frac{1}{3}\left(\begin{array}{ccc}1050\\0\\1020)\end{array}\right)[/tex]

[tex]X=\left[\begin{array}{ccc}350\\0\\340\end{array}\right][/tex]

Therefore:

a= 350 Transistors

b=0 Resistors

c=340 Computer chips