Respuesta :
Answer:
1/24
Step-by-step explanation:
f(x) = -6/x
I will rewrite this as
f(x) = -6 x^-1
We know the derivative of x^-1 is -1 x^ (-1-1) or -1 x^-2
df/dx = -6 * -1 x ^ -2
df/dx = 6 x^-2
df/dx = 6/x^2
Evaluated at x=12
df/dx = 6/12^2
=6/144
=1/24
Answer:
1/24
Step-by-step explanation:
[tex]f(x)=\frac{-6}{x}[/tex]
We want to find the derivative of f at x=12.
I'm assuming you want to see the formal definition of a derivative approach.
The definition is there:
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}[/tex]
So we need to find f(x+h) given f(x).
To do this all you have to is replace old input, x, with new input, (x+h).
Let's do that:
[tex]f(x+h)=\frac{-6}{x+h}[/tex].
Let's go to the definition now:
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}[/tex]
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{\frac{-6}{x+h}-\frac{-6}{x}}{h}[/tex]
Multiply top and bottom by the least common multiple the denominators of the mini-fractions. That is, we are going to multiply top and bottom by x(x+h):
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{\frac{-6}{x+h}x(x+h)-\frac{-6}{x}x(x+h)}{hx(x+h)}[/tex]
Let's cancel the (x+h)'s in the first mini-fraction.
We will also cancel the (x)'s in the second-mini-fraction.
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{-6x--6(x+h)}{hx(x+h)}[/tex]
--=+ so I'm rewriting that part:
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{-6x+6(x+h)}{hx(x+h)}[/tex]
Distribute (NOT ON BOTTOM!):
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{-6x+6x+6h}{hx(x+h)}[/tex]
Simplify the top (-6x+6x=0):
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{6h}{hx(x+h)}[/tex]
Simplify the fraction (h/h=1):
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{6}{x(x+h)}[/tex]
Now you can plug in 0 for h because it doesn't give you 0/0:
[tex]\frac{6}{x(x+0)}[/tex]
[tex]\frac{6}{x^2}[/tex]
[tex]f'(x)=\frac{6}{x^2}[/tex]
We want to evaluated the derivative at x=12 so replace x with 12:
[tex]f'(12)=\frac{6}{12^2}[/tex]
[tex]f'(12)=\frac{6}{144}[/tex]
Divide top and bottom by 6:
[tex]f'(12)=\frac{1}{24}[/tex]
