Respuesta :

Answer: second option

Step-by-step explanation:

 Find the distance AE by subtracting AB and  DC and dividing by 2:

[tex]AE=\frac{AB-DC}{2}\\\\AE=\frac{15ft-7ft}{2}\\\\AE=4ft[/tex]

Knowing the length of AD and AE, you can apply the Pythagorean Theorem to calculate the length DE:

[tex]c=\sqrt{a^2-b^2}[/tex]

Where "a" is the hypotenuse and "b" and "c" are the legs of the triangle.

Then:

[tex]a=AD=5ft\\b=AE=4ft\\c=DE[/tex]

Substituting values into [tex]c=\sqrt{a^2-b^2}[/tex] you get that the lenght of DE is:

[tex]DE=\sqrt{(5ft)^2+(4ft)^2}\\DE=3ft[/tex]

Calculate thea area of the trapezoid with the formula:

[tex]A=\frac{h}{2}(B+b)[/tex]

Where h is the height, B is the larger base and b is the smaller base.

Substituting, you get:

[tex]h=DE=3ft\\B=AB=15ft\\b=DC=7ft\\\\A=\frac{3ft}{2}(15ft+7ft)=33ft^2[/tex]

ACCESS MORE