Respuesta :
Answer:Counter,
0.799,
1.921
Explanation:
Given data
[tex]T_{h_i}=200^{\circ}C[/tex]
[tex]T_{h_o}=120^{\circ}C[/tex]
[tex]T_{c_i}=100^{\circ}C[/tex]
[tex]T_{c_o}=125^{\circ}C[/tex]
Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger
Equating Heat exchange
[tex]m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ][/tex]
[tex]\frac{m_hc_{ph}}{m_cc_{pc}}[/tex]=[tex]\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )[/tex]
we can see that heat capacity of hot fluid is minimum
Also from energy balance
[tex]Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )[/tex]
[tex]NTU=\frac{UA}{\left ( mc_p\right )_{h}}[/tex]=[tex]\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}[/tex]
[tex]T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}[/tex]
[tex]T_m=41.63^{\circ}C[/tex]
NTU=1.921
[tex]And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}[/tex]
[tex]\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}[/tex]
[tex]\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}[/tex]
[tex]\epsilon =\frac{1-0.2669}{1-0.0834}[/tex]
[tex]\epsilon =0.799[/tex]