Answer:
w = -28.8 kJ/kg
q = 723.13 kJ/kg
Explanation:
Given :
Initial properties of piston cylinder assemblies
Temperature, [tex]T_{1}[/tex] = -20°C
Quality, x = 70%
= 0.7
Final properties of piston cylinder assemblies
Temperature, [tex]T_{2}[/tex] = 180°C
Pressure, [tex]P_{2}[/tex] = 6 bar
From saturated ammonia tables at [tex]T_{1}[/tex] = -20°C we get
[tex]P_{1}[/tex] = [tex]P_{sat}[/tex] = 1.9019 bar
[tex]v_{f}[/tex] = 0.001504 [tex]m^{3}[/tex] / kg
[tex]v_{g}[/tex] = 0.62334 [tex]m^{3}[/tex] / kg
[tex]u_{f}[/tex] = 88.76 kJ/kg
[tex]u_{g}[/tex] = 1299.5 kJ/kg
Therefore, for initial state 1 we can find
[tex]v_{1}[/tex] = [tex]v_{f}[/tex]+x ([tex]v_{g}[/tex]-[tex]v_{f}[/tex]
= 0.001504+0.7(0.62334-0.001504)
= 0.43678 [tex]m^{3}[/tex] / kg
[tex]u_{1}[/tex] = [tex]u_{f}[/tex]+x ([tex]u_{g}[/tex]-[tex]u_{f}[/tex]
= 88.76+0.7(1299.5-88.76)
=936.27 kJ/kg
Now, from super heated ammonia at 180°C, we get,
[tex]v_{2}[/tex] = 0.3639 [tex]m^{3}[/tex] / kg
[tex]u_{2}[/tex] = 1688.22 kJ/kg
Therefore, work done, W = area under the curve
[tex]w = \left (\frac{P_{1}+P_{2}}{2} \right )\left ( v_{2}-v_{1} \right )[/tex]
[tex]w = \left (\frac{1.9019+6\times 10^{5}}{2} \right )\left ( 0.3639-0.43678\right )[/tex]
[tex]w = -28794.52[/tex] J/kg
= -28.8 kJ/kg
Now for heat transfer
[tex]q = (u_{2}-u_{1})+w[/tex]
[tex]q = (1688.2-936.27)-28.8[/tex]
= 723.13 kJ/kg