Answer:
[tex]\frac{K.E_r}{K.E}=2.875[/tex]
Explanation:
Given:
mass, m = 87.5kg
Velocity, V = 0.900c
now,
the relativistic kinetic energy id given as:
[tex]K.E_r=(\gamma-1)mc^2[/tex] ...........(1)
where,
[tex]\gamma[/tex] = relativistic factor, given as; [tex]\gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}[/tex]
Now, the classical kinetic energy is given as:
[tex]K.E = \frac{1}{2}mv^2[/tex] ..........(2)
Dividing the equation (1) by (2) we get
[tex]\frac{K.E_r}{K.E}=\frac{(\gamma-1)mc^2}{\frac{1}{2}mv^2}[/tex]
or
[tex]\frac{K.E_r}{K.E}=\frac{(\gamma-1)c^2}{\frac{1}{2}v^2}[/tex]
substituting the values in the equation we get,
[tex]\frac{K.E_r}{K.E}=\frac{(\frac{1}{\sqrt{1-\frac{(0.90c)^2}{c^2}}}-1)c^2}{\frac{1}{2}\times(0.90c)^2}[/tex]
or
[tex]\frac{K.E_r}{K.E}=2.875[/tex]