Answer: D. 19.9 g hydrogen remains.
Explanation:
To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]
a) moles of [tex]H_2[/tex]
[tex]\text{Number of moles}=\frac{20.0g}{2g/mol}=10.0moles[/tex]
b) moles of [tex]I_2[/tex]
[tex]\text{Number of moles}=\frac{20.0g}{254g/mol}=0.0787moles[/tex]
[tex]H_2(g)+I_2(g)\rightarrow 2HI(g)[/tex]
According to stoichiometry :
1 mole of [tex]I_2[/tex] require 1 mole of [tex]H_2[/tex]
Thus 0.0787 moles of [tex]l_2[/tex] require=[tex]\frac{1}{1}\times 0.0787=0.0787moles[/tex] of [tex]H_2[/tex]
Thus [tex]l_2[/tex] is the limiting reagent as it limits the formation of product and [tex]H_2[/tex] acts as the excess reagent. (10.0-0.0787)= 9.92 moles of [tex]H_2[/tex]are left unreacted.
Mass of [tex]H_2=moles\times {\text {Molar mass}}=9.92moles\times 2.01g/mol=19.9g[/tex]
Thus 19.9 g of [tex]H_2[/tex] remains unreacted.