The polynomial function F(x) = 2x2 +8x-7 has a critical point at which of the
following x-values?
Oo oo
mio è
A. x=-7
B. x= -2
C. x= 0
D. x = 2

Respuesta :

Answer:

Option B [tex]x=-2[/tex]

Step-by-step explanation:

we know that

The critical point of a function are the points on the graph of a function where the derivative is zero or the derivative does not exist.

we have

[tex]f(x)=2x^{2}+8x-7[/tex]

step 1

Take the derivative of the function

[tex]f'(x)=4x+8[/tex]

step 2

Set that derivative equal to 0 and solve for x. Each x value you find is known as a critical number

[tex]f'(x)=0[/tex]

[tex]4x+8=0[/tex]

[tex]4x=-8[/tex]

[tex]x=-2[/tex]

Alternative Method

The critical point of the quadratic equation is the vertex, because the function changes from decreasing to increasing at that point (In this problem the vertex is a minimum)

we have

[tex]f(x)=2x^{2}+8x-7[/tex]

Convert into vertex form

[tex]f(x)+7=2x^{2}+8x[/tex]

[tex]f(x)+7=2(x^{2}+4x)[/tex]

[tex]f(x)+7+8=2(x^{2}+4x+4)[/tex]

[tex]f(x)+15=2(x^{2}+4x+4)[/tex]

[tex]f(x)+15=2(x+2)^{2}[/tex]

[tex]f(x)=2(x+2)^{2}-15[/tex]

the vertex is the point (-2,-15)

therefore

The x-coordinate of the critical point is x=-2

ACCESS MORE
EDU ACCESS