Answer:
97.96 [tex]\frac{rad}{s}[/tex]
Explanation:
The initial angular velocity is [tex]w_{0}[/tex] = 126 rad / s.
The constant angular deceleration is 5.00 rad / s2.
The constant angular deceleration is, by definition: dw / dt.
[tex]\frac{dw}{dt}=-5 \frac{rad}{s^{2} }[/tex]
Separating variables
[tex]dw=-5 dt[/tex]
Integration (limits for w: 0 to W0; limits for t: 0 to t)
[tex]w= w_{0}-5t[/tex]
W is by definition [tex]\frac{d\alpha }{dt}[/tex], where [tex]\alpha[/tex] is the angle.
[tex]\frac{d\alpha}{dt}=w_{0} -5t[/tex]
Separating variables
[tex]d\alpha=(w_{0} -5t )dt[/tex]
Integration (limits for [tex]\alpha[/tex]: 0 to 628; limits for t: 0 to t)
[tex]\alpha =w_{0}t-(\frac{5}{2})t^{2}[/tex]
[tex]128=126t-(\frac{5}{2})t^{2}[/tex]
Put in on the typical form of a quadratic equation:
[tex]\frac{5}{2}t^{2}-126t+628=0[/tex]
Solve by using the quadratic equation formula and discard the higher result because it lacks physical sense.
t=5.608 s
Evaluate at this time the angular velocity:
[tex]w(t=5.608)=126-5*5.608[/tex]
[tex]w(5.608)=97.96 \frac{rad}{s}[/tex]