Answer:
The required answer is [tex]x+C=\frac{1}{2}\ln|\frac{2+x-y}{y-x}|[/tex].
Step-by-step explanation:
The given differential equation is
[tex]\frac{dy}{dx}=(x-y+1)^2[/tex]
Substitute u=x-y+1 in the above equation.
[tex]\frac{du}{dx}=1-\frac{dy}{dx}[/tex]
[tex]\frac{dy}{dx}=1-\frac{du}{dx}[/tex]
[tex]1-\frac{du}{dx}=u^2[/tex]
[tex]1-u^2=\frac{du}{dx}[/tex]
Using variable separable method, we get
[tex]dx=\frac{du}{1-u^2}[/tex]
Integrate both the sides.
[tex]\int dx=\int \frac{du}{1-u^2}[/tex]
[tex]x+C=\frac{1}{2}\ln|\frac{1+u}{1-u}|[/tex] [tex][\because \int \frac{dx}{a^2-x^2}=\frac{1}{2a}\n|\frac{a+x}{a-x}|+C][/tex]
Substitute u=x-y+1 in the above equation.
[tex]x+C=\frac{1}{2}\ln|\frac{1+x-y+1}{1-(x-y+1)}|[/tex]
[tex]x+C=\frac{1}{2}\ln|\frac{2+x-y}{y-x}|[/tex]
Therefore the required answer is [tex]x+C=\frac{1}{2}\ln|\frac{2+x-y}{y-x}|[/tex].