Respuesta :

Answer:

[tex]\delta=\frac{\epsilon}{3}[/tex]

The proof is in the explanation.

Step-by-step explanation:

Compare [tex]\lim_{x\rightarrow 7}(3x-2)=19[/tex] to [tex]\lim_{x\rightarrow a}f(x)=L[/tex].

We want to find  [tex]\delta[/tex] such that whenever [tex]0<|x-a|<\delta[/tex] we have [tex]|f(x)-L|<\epsilon[/tex].

We want to find [tex]\delta[/tex] such that whenever [tex]0<|x-7|<\delta[/tex] we have [tex]|3x-2-19|<\epsilon[/tex].

[tex]|3x-2-19|<\epsilon[/tex]

Simplify:

[tex]|3x-21|<\epsilon[/tex]

Factor on left side inside the | |:

[tex]|3(x-7)|<\epsilon[/tex]

|ab|=|a||b|:

[tex]|3||x-7|<\epsilon[/tex]

|3|=3:

[tex]3|x-7|<\epsilon[/tex]

Divide both sides by 3:

[tex]|x-7|<\frac{\epsilon}{3}[/tex]

So we will need to choose [tex]\delta=\frac{\epsilon}{3}[/tex].

We want to prove there exists a [tex]\delta[/tex] such that whenever [tex]0<|x-7|<\delta[/tex] we have [tex]|f(x)-L|<\epsilon[/tex].

Proof:

Let [tex]\epsilon>0[/tex]. We will choose [tex]\delta=\frac{\epsilon}{3}[/tex] such that [tex]0<|x-7|<\delta[/tex] will give us [tex]|f(x)-L|<\epsilon[/tex].

[tex]|f(x)-L|=|(3x-2)-19|[/tex]

        [tex]=|3x-21|[/tex]

        [tex]=|3||x-7|[/tex]

        [tex] =3|x-7|<3\delta=3\frac{\epsilon}{3}=\epsilon[/tex].

Therefore, we have for all [tex]\epsilon>0[/tex], [tex]\delta=\frac{\epsilon}{3}[/tex] is the number that satisfies the definition.

ACCESS MORE