Respuesta :
Answer:
Step-by-step explanation:
The Inverse of the matrix doesn't exist because the determinant is equal to 0.
Answer:
The inverse of given matrix is not exist, since determinant is 0.
Step-by-step explanation:
The inverse of a square matrix [tex]A[/tex] is [tex]A^{-1}[/tex] such that
[tex]A A^{-1}=I[/tex] where I is the identity matrix.
Consider, [tex]A = \left[\begin{array}{ccc}3&3&-1\\-12&-12&4\\2&6&0\end{array}\right][/tex]
[tex]\mathrm{Matrix\:can\:only\:be\:inverted\:if\:it\:is\:non-singular,\:that\:is:}[/tex]
[tex]\det \begin{pmatrix}3&3&-1\\ -12&-12&4\\ 2&6&0\end{pmatrix}\ne 0[/tex]
[tex]\det \begin{pmatrix}3&3&-1\\ -12&-12&4\\ 2&6&0\end{pmatrix}[/tex]
[tex]\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:\quad \:[/tex]
[tex]\det \begin{pmatrix}a&b&c\\ d&e&f\\ g&h&i\end{pmatrix}=a\cdot \det \begin{pmatrix}e&f\\ h&i\end{pmatrix}-b\cdot \det \begin{pmatrix}d&f\\ g&i\end{pmatrix}+c\cdot \det \begin{pmatrix}d&e\\ g&h\end{pmatrix}[/tex]
[tex]=3\cdot \det \begin{pmatrix}-12&4\\ 6&0\end{pmatrix}-3\cdot \det \begin{pmatrix}-12&4\\ 2&0\end{pmatrix}-1\cdot \det \begin{pmatrix}-12&-12\\ 2&6\end{pmatrix}[/tex]
[tex]=3\left(-24\right)-3\left(-8\right)-1\cdot \left(-48\right)[/tex]
[tex]3\left(-24\right)-3\left(-8\right)-1\cdot \left(-48\right)=0[/tex]
Therefore, the inverse of given matrix is not exist, since determinant is 0.