Consider the differential equation x^2 y''-xy'-3y=0. If y1=x3 is one solution use redution of order formula to find a second linearly independent solution

Respuesta :

Suppose [tex]y_2(x)=y_1(x)v(x)[/tex] is another solution. Then

[tex]\begin{cases}y_2=vx^3\\{y_2}'=v'x^3+3vx^2//{y_2}''=v''x^3+6v'x^2+6vx\end{cases}[/tex]

Substituting these derivatives into the ODE gives

[tex]x^2(v''x^3+6v'x^2+6vx)-x(v'x^3+3vx^2)-3vx^3=0[/tex]

[tex]x^5v''+5x^4v'=0[/tex]

Let [tex]u(x)=v'(x)[/tex], so that

[tex]\begin{cases}u=v'\\u'=v''\end{cases}[/tex]

Then the ODE becomes

[tex]x^5u'+5x^4u=0[/tex]

and we can condense the left hand side as a derivative of a product,

[tex]\dfrac{\mathrm d}{\mathrm dx}[x^5u]=0[/tex]

Integrate both sides with respect to [tex]x[/tex]:

[tex]\displaystyle\int\frac{\mathrm d}{\mathrm dx}[x^5u]\,\mathrm dx=C[/tex]

[tex]x^5u=C\implies u=Cx^{-5}[/tex]

Solve for [tex]v[/tex]:

[tex]v'=Cx^{-5}\implies v=-\dfrac{C_1}4x^{-4}+C_2[/tex]

Solve for [tex]y_2[/tex]:

[tex]\dfrac{y_2}{x^3}=-\dfrac{C_1}4x^{-4}+C_2\implies y_2=C_2x^3-\dfrac{C_1}{4x}[/tex]

So another linearly independent solution is [tex]y_2=\dfrac1x[/tex].

ACCESS MORE